

ADVANCED GCE MATHEMATICS

Mechanics 4

Candidates answer on the answer booklet.

OCR supplied materials:

- 8 page answer booklet
- (sent with general stationery)
- List of Formulae (MF1)

Other materials required:

• Scientific or graphical calculator

Thursday 23 June 2011 Morning

4731

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- The acceleration due to gravity is denoted by $g \text{ m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- You are permitted to use a scientific or graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 When the power is turned off, a fan disk inside a jet engine slows down with constant angular deceleration 0.8 rad s^{-2} .
 - (i) Find the time taken for the angular speed to decrease from 950 rad s^{-1} to 750 rad s^{-1} . [2]
 - (ii) Find the angle through which the disk turns as the angular speed decreases from 220 rad s^{-1} to 200 rad s^{-1} . [2]
 - (iii) Find the time taken for the disk to make the final 10 revolutions before coming to rest. [3]
- 2 A straight rod *AB* has length *a*. The rod has variable density, and at a distance *x* from *A* its mass per unit length is $ke^{-\frac{x}{a}}$, where *k* is a constant. Find, in an exact form, the distance of the centre of mass of the rod from *A*. [7]
- 3 A uniform rod XY, of mass 5 kg and length 1.8 m, is free to rotate in a vertical plane about a fixed horizontal axis through X. The rod is at rest with Y vertically below X when a couple of constant moment is applied to the rod. It then rotates, and comes instantaneously to rest when XY is horizontal.
 - (i) Find the moment of the couple. [4]
 - (ii) Find the angular acceleration of the rod
 - (a) immediately after the couple is first applied, [3]
 - (b) when XY is horizontal.

Two small smooth pegs *A* and *B* are fixed at a distance 2*a* apart on the same horizontal level, and *C* is the mid-point of *AB*. A uniform rod *CD*, of mass *m* and length *a*, is freely pivoted at *C* and can rotate in the vertical plane containing *AB*, with *D* below the level of *AB*. A light elastic string, of natural length *a* and modulus of elasticity 3*mg*, passes round the peg *A* and its ends are attached to *C* and *D*. Another light elastic string, of natural length *a* and modulus of elastic string, of natural length *a* and modulus of elastic string, so that the angle *BCD* is 2θ (see diagram).

(i) Taking AB as the reference level for gravitational potential energy, show that the total potential energy of the system is

$$\frac{1}{2}mga(14-2\cos 2\theta-\sin 2\theta).$$
[5]

- (ii) Find the value of θ for which the system is in equilibrium.
- (iii) Determine whether this position of equilibrium is stable or unstable. [2]

4

[2]

[3]

- 5 The region inside the circle $x^2 + y^2 = a^2$ is rotated about the x-axis to form a uniform solid sphere of radius a and volume $\frac{4}{3}\pi a^3$. The mass of the sphere is 10M.
 - (i) Show by integration that the moment of inertia of the sphere about the x-axis is $4Ma^2$. (You may assume the standard formula $\frac{1}{2}mr^2$ for the moment of inertia of a uniform disc about its axis.) [6]

The sphere is free to rotate about a fixed horizontal axis which is a diameter of the sphere. A particle of mass M is attached to the lowest point of the sphere. The sphere with the particle attached then makes small oscillations as a compound pendulum.

- (ii) Find, in terms of *a* and *g*, the approximate period of these oscillations. [5]
- 6 Two ships P and Q are moving on straight courses with constant speeds. At one instant Q is 80 km from P on a bearing of 220° . Three hours later, Q is 36 km due south of P.
 - (i) Show that the velocity of Q relative to P is 19.1 km h⁻¹ in the direction with bearing 063.8° (both correct to 3 significant figures). [5]
 - (ii) Find the shortest distance between the two ships in the subsequent motion. [2]

Given that the speed of P is 28 km h^{-1} and Q is travelling in the direction with bearing 105° , find

- (iii) the bearing of the direction in which P is travelling,
- (iv) the speed of Q.

A uniform rectangular block of mass *m* and cross-section ABCD has AB = CD = 6a and AD = BC = 2a. The point *X* is on *AB* such that AX = a and *G* is the centre of *ABCD*. The block is placed with *AB* perpendicular to the straight edge of a rough horizontal table. *AX* is in contact with the table and *XB* overhangs the edge (see diagram). The block is released from rest in this position, and it rotates without slipping about a horizontal axis through *X*.

(i) Find the moment of inertia of the block about the axis of rotation. [3]

For the instant when XG is horizontal,

- (ii) show that the angular acceleration of the block is $\frac{3\sqrt{5g}}{25a}$, [2]
- (iii) find the angular speed of the block,
- (iv) show that the force exerted by the table on the block has magnitude $\frac{2\sqrt{70}}{25}mg$. [8]

[3]

[3]

[2]

Mark Scheme

		1	
1 (i)	Using $\omega_2 = \omega_1 + \alpha t$, $750 = 950 - 0.8t$ Time taken is 250 s	M1 A1 [2]	
(ii)	Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$, $200^2 = 220^2 - 1.6\theta$ Angle is 5250 rad	M1 A1 [2]	
(iii)	Angle is 20π rad	R1	
(111)	Using $\theta = \omega_2 t - \frac{1}{2} \alpha t^2$, $20\pi = 0 + 0.4t^2$	M1	or equivalent; e.g. finding $\omega_1 = 10.03$ and then $t = \omega \div 0.8$
	Time taken is 12.5 s (3 sf)	A1 [3]	Accept $\sqrt{50\pi}$ or $5\sqrt{2\pi}$
2	$m = \int_0^a k \mathrm{e}^{-\frac{x}{a}} \mathrm{d}x$	M1	For $\int e^{-\frac{x}{a}} dx$
	$= k \left[-a e^{-\frac{x}{a}} \right]_{0}^{a} \left(= ka(1 - e^{-1}) \right)$	A1	For $-a e^{-\frac{x}{a}}$
	$m\overline{x} = \int_{0}^{a} x k \mathrm{e}^{-\frac{x}{a}} \mathrm{d}x$	M1	For $\int x e^{-\frac{x}{a}} dx$
		M1	Integration by parts
	$= k \left[-ax e^{-\frac{x}{a}} - a^2 e^{-\frac{x}{a}} \right]_0^{\alpha}$	A1	For $-ax e^{-\frac{x}{a}} - a^2 e^{-\frac{x}{a}}$
	$=ka^{2}(1-2e^{-1})$	A1	For $a^2(1-2e^{-1})$ or exact equivalent
	$\overline{x} = \frac{ka^2(1-2e^{-1})}{ka(1-e^{-1})}$		
	$=\frac{a(1-2e^{-1})}{1-e^{-1}}=\frac{a(e-2)}{e-1}$	A1 [7]	
		-	
3 (i)	WD by couple is $C \times \frac{\pi}{2}$ Change in PE is $5 \times 9.8 \times 0.9$ By conservation of energy	B1 B1	Must clearly be PE (not moment)
	$C \times \frac{\pi}{2} = 5 \times 9.8 \times 0.9$	M1	Equation involving WD and PE
	Moment of couple is 28.1 Nm (3 sf)	A1 [4]	
(ii)	$I = \frac{4}{5} \times 5 \times 0.9^2$ (= 5.4)	B1	Can be earned anywhere in the question
(a)	$28.075 = 5.4\alpha$	M1	Applying $C = I\alpha$
	Angular acceleration is 5.20 rad s^{-2} (3 sf)	A1 ft [3]	ft is $C \div I$
(ii) (b)	$28.075 - 5 \times 9.8 \times 0.9 = 5.4\alpha$	M1	Rotational equation of motion (3 terms) (Allow 1.8 instead of 0.9 etc.)
	Angular acceleration is $(-) 2.97 \text{ rad s}^{-2}$ (3 sf)	A1 [2]	

4	GPE is $-mg(\frac{1}{2}a\sin 2\theta)$	B1	Negative sign is essential, but may be implied
(1)	EPE is $\frac{3mg}{2a}AD^2 + \frac{4mg}{2a}BD^2$	M1	later
	$=\frac{3mg}{2a}(2a\cos\theta)^2 + \frac{4mg}{2a}(2a\sin\theta)^2$	A1	Any correct form
	$= mga(6\cos^2\theta + 8\sin^2\theta)$		
	$= mga(3 + 3\cos 2\theta + 4 - 4\cos 2\theta)$	M1	Expressing EPE in terms of $\cos 2\theta$
	$= mga(7 - \cos 2\theta)$		
	Total PE is $V = mga(7 - \cos 2\theta) - \frac{1}{2}mga\sin 2\theta$		
	$=\frac{1}{2}mga(14-2\cos 2\theta-\sin 2\theta)$	A1 ag [5]	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = \frac{1}{2}mga(4\sin 2\theta - 2\cos 2\theta)$	B1	
	$\frac{dV}{dt^2} = 0$ when $4\sin 2\theta = 2\cos 2\theta$		
	$d\theta$ tan $2\theta = 0.5$	M1	Equating to zero and solving
	$\theta = 0.232 (3 \text{ sf})$	A1 [3]	Accept 13.3°
(iii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = \frac{1}{2} mga(8\cos 2\theta + 4\sin 2\theta)$		
	When $\theta = 0.232$, $\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} > 0$	M1	
	So the equilibrium is stable	A1 [2]	Fully correct working only

5 (i)	$(\frac{4}{3}\pi a^3)\rho = 10M$, so $\rho = \frac{15M}{2\pi a^3}$	M1	
	$I = \sum_{n=1}^{\infty} \frac{1}{2} (\rho \pi y^2 \delta x) y^2 = \frac{1}{2} \rho \pi \int y^4 dx$	M1	For $\int y^4 dx$
	$= \frac{1}{2} \rho \pi \int_{-a}^{a} (a^2 - x^2)^2 \mathrm{d}x$	A1	Correct integral expression including limits
	$= \frac{1}{2} \rho \pi \left[a^4 x - \frac{2}{3} a^2 x^3 + \frac{1}{5} x^5 \right]_{-a}^{a}$	A1	For $a^4x - \frac{2}{3}a^2x^3 + \frac{1}{5}x^5$
	$= \frac{1}{2} \rho \pi \left(a^{5} - \frac{2}{3} a^{5} + \frac{1}{5} a^{5} \right) \times 2$		
	$=\frac{8}{15}\rho\pi a^5$	A1	
	$=\frac{8}{15}\times\frac{15M}{2\pi a^3}\times\pi a^5=4Ma^2$	A1 ag [6]	
(ii)	MI is $4Ma^2 + Ma^2$	M1	
	$=5Ma^2$	A1	
	$-Mga\sin\theta = 5Ma^2\ddot{\theta}$	M1	Equation of motion
	$\ddot{\theta} \approx -\frac{g}{5a}\theta$ Period is $2\pi \sqrt{\frac{5a}{g}}$	M1 A1 [5]	Obtaining period
	Alternative for last 3 marks of (ii) $11M \overline{x} = 10M(0) + Ma$ M1		Finding centre of mass
	$\overline{x} = \frac{1}{11}a$		
	Period is $2\pi \sqrt{\frac{I}{mgh}} = 2\pi \sqrt{\frac{5Ma^2}{11Mg\frac{1}{11}a}}$ M1		Using formula Dependent on previous M1 $ \int \frac{1}{5Mr^2} $
	$=2\pi\sqrt{\frac{5a}{g}}$ A1		Note $2\pi \sqrt{\frac{1}{Mgh}} = 2\pi \sqrt{\frac{3Ma}{Mga}}$ is M0

6	As viewed from P		
(i)	P Still Q T	M1	Suitable diagram showing relative velocity <i>May be implied</i>
	$x^2 = 80^2 + 36^2 - 2 \times 80 \times 36 \cos 40^\circ$	M1	
	x = 57.30	4.1	
	Relative velocity has magnitude $\frac{1}{3} = 19.1 \text{ km h}^3$	A1 ag	
	$\frac{\sin\alpha}{36} = \frac{\sin 40^{\circ}}{57.30}$	M1	Or other valid method for finding a relevant angle
	$\alpha = 23.82^{\circ}$ Relative velocity has bearing $40 + \alpha = 063.8^{\circ}$	A1 ag [5]	
	OR, using components, Diagram M1 East $\frac{80 \sin 40^{\circ}}{3}$ (=17.14) M1 North $\frac{80 \cos 40^{\circ} - 36}{3}$ (=8.428) M1 Since $\sqrt{17.14^2 + 8.428^2}$ 10.1		Implied by both components correct
	Bearing $\tan^{-1} \frac{17.14}{8.428} = 063.8^{\circ}$ A1 ag		
(ii)	Shortest distance $d = 80 \sin 23.82^{\circ}$ = 32.3 km (3 sf)	M1 A1 [2]	or 36 sin 63.8°
(iii)	63.5" 19.1 141.2" Ve	M1	Velocity diagram <i>May be implied</i> (28 opposite a known angle between sides with positive and negative slopes)
	$\frac{\sin\beta}{19.10} = \frac{\sin 41.18^{\circ}}{28}$ $\beta = 26.69^{\circ}$	M1	
	Bearing of <i>P</i> is $105 + \beta = 131.7^{\circ}$ (1 dp)	A1 [3]	Using components for (iii) and (iv) M2A1 for $\theta = 131.7^{\circ}$ or $v = 39.4$ M1A1 for other quantity
(iv)	$\frac{v_Q}{\sin 112.13^\circ} = \frac{28}{\sin 41.18^\circ}$	M1	Or other valid method for finding speed
	Speed of Q is 39.4 km h ⁻¹ (3 sf)	A1 [2]	

7 (i)	$XG = \sqrt{5}a$		B1	For $I_G = \frac{1}{3}m\{a^2 + (3a)^2\}$
	$I = \frac{1}{3}m\{a^2 + (3a)^2\} + m(\sqrt{5}a)^2$		M1	Using parallel axes rule
	$=\frac{25}{3}ma^2$		A1	
	OR other complete method e g	M1	[J]	
	$\frac{4}{3}\left(\frac{1}{6}m\right)\left(\left(\frac{1}{2}a\right)^2 + a^2\right) + \frac{4}{3}\left(\frac{5}{6}m\right)\left(\left(\frac{5}{2}a\right)^2 + a^2\right)$	A1		Correct expression for I
	$I = \frac{25}{3}ma^2$	A1		
(ii)	$mg(\sqrt{5}a) = I\alpha$		M1	Allow, e.g. $mg(2a) = I \alpha$
	$\sqrt{5}mga = \frac{25}{3}ma^2\alpha$			
	$\alpha = \frac{3\sqrt{5}g}{25}$		A1 ag	
	<u>25a</u>		[2]	
(iii)	$\frac{1}{2}I\omega^2 = mga$		M1	Equation involving KE and PE
	$\frac{25}{6}ma^2\omega^2 = mga$		A1 ft	
	$\omega = \sqrt{\frac{6g}{25}}$		A1	
(:- -)	V 25a		[3]	2
(1V)	$H = m(XG)\omega^2$		M1	For using acceleration $r \omega^2$
	(6a)		AI	Or (F parallel to BA, θ is angle GXB)
	$= m(\sqrt{5}a) \left(\frac{6g}{25a}\right)$			$F - mg\sin\theta = m((AG)\omega^2\cos\theta - (AG)\alpha\sin\theta)$
	$-\frac{6\sqrt{5}}{100}$		A1 ft	ft from incorrect ω only
	$-\frac{1}{25}mg$		AIII	$m\sigma(2\sqrt{5}+12)$
				Or $F = \frac{m_g(2\sqrt{3} + 12)}{25}$
			M1	For using acceleration $r\alpha$
	$mg - V = m(XG)\alpha$		A1	Or (R parallel to AD)
	$V = mg - m(\sqrt{5}a) \left(\frac{3\sqrt{5}g}{25a}\right)$			$mg\cos\theta - R = m((AG)\omega^2\sin\theta + (AG)\alpha\cos\theta)$
	$=\frac{2}{5}mg$		A1	Or $R = \frac{mg(4\sqrt{5}-6)}{25}$
	Force has magnitude $\sqrt{H^2 + V^2}$			Or $\sqrt{F^2 + R^2}$
	$=\frac{2}{25}mg\sqrt{(3\sqrt{5})^2+5^2}$		M1	
	$=\frac{2\sqrt{70}}{25}mg$		A1 ag [8]	